Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein.

نویسندگان

  • B L Foster
  • M Ao
  • C Willoughby
  • Y Soenjaya
  • E Holm
  • L Lukashova
  • A B Tran
  • H F Wimer
  • P M Zerfas
  • F H Nociti
  • K R Kantovitz
  • B D Quan
  • E D Sone
  • H A Goldberg
  • M J Somerman
چکیده

Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in endochondral ossification in the cranial base, and craniofacial morphology was unaffected in Bsp(-/-) mice. These analyses confirm a critical role for BSP in processes of cementogenesis and intramembranous ossification of craniofacial bone, whereas endochondral ossification in the cranial base was minimally affected and dentinogenesis was normal in Bsp(-/-) molar teeth. Dissimilar effects of loss of BSP on mineralization of dental and craniofacial tissues suggest local differences in the role of BSP and/or yet to be defined interactions with site-specific factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of Fam20C in Cells Expressing Type I Collagen Causes Periodontal Disease in Mice

BACKGROUND FAM20C is a kinase that phosphorylates secretory proteins. Previous studies have shown that FAM20C plays an essential role in the formation and mineralization of bone, dentin and enamel. The present study analyzed the loss-of-function effects of FAM20C on the health of mouse periodontal tissues. METHODS By crossbreeding 2.3 kb Col 1a1-Cre mice with Fam20Cfl/fl mice, we created 2.3 ...

متن کامل

بررسی هیستولوژیک اثربخشی Enamel matrix derivative در Surgical defect دندان گوسفند

The aim of the present study was the histological evaluation of Enamel Matrix Derivative (EMD) effectiveness for regeneration of periodontal defects. EMD activates cementum synthesis, PDL and bone during the maturation stage of follicole. In this research, EMD was used in surgical defects of premolar teeth in four adult sheep. Muccoperiosteal flap was reflected in buccal site of teeth. The bucc...

متن کامل

Tissue Engineering in Maxillary Bone Defects

BACKGROUND Restoration of craniofacial bone defects has been a concern for oral and maxillofacial surgeons. In this study, the healing effect of fibrin glue scaffold was compared with autologous bone graft in mandibular defects of rabbit. METHODS Bilateral unicortical osteotomy was performed in the diastema region of 10 male Dutch rabbits. The subjects were randomly divided into 2 equal group...

متن کامل

Loss of Iroquois homeobox transcription factors 3 and 5 in osteoblasts disrupts cranial mineralization

Cranial malformations are a significant cause of perinatal morbidity and mortality. Iroquois homeobox transcription factors (IRX) are expressed early in bone tissue formation and facilitate patterning and mineralization of the skeleton. Mice lacking Irx5 appear grossly normal, suggesting that redundancy within the Iroquois family. However, global loss of both Irx3 and Irx5 in mice leads to sign...

متن کامل

Bone mineralization-dependent craniosynostosis and craniofacial shape abnormalities in the mouse model of infantile hypophosphatasia.

BACKGROUND Inactivating mutations in tissue-nonspecific alkaline phosphatase (TNAP) cause hypophosphatasia (HPP), which is commonly characterized by decreased bone mineralization. Infants and mice with HPP can also develop craniosynostosis and craniofacial shape abnormalities, although the mechanism by which TNAP deficiency causes these craniofacial defects is not yet known. Manifestations of H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2015